The Double Bind in Engineering and Computer Science

Building Capacity for Institutional Transformation in the Twenty-first Century

Gregory N. Washington, Ph.D. Dean, The Henry Samueli School of Engineering Professor, Mechanical and Aerospace Engineering

Why STEM? - Grand Challenges

- Three Major Forces
 - Population Issues (7 Billion people)
 - Energy/Environment
 - Infrastructure
 - Poverty
 - Food
 - Global Market
 Economies
 - Telecommunications and Aviation Revolution

1-25 Bridge Collance - Minnecota

Why STEM? - Great Opportunities

- In April 2003, Human Genome (3 Billion DNA sequenced and encoded on 25K genes).
- By 2013 computers will eclipse humans in Computational Capacity. Laptops by 2029.
- Communications Bandwidth has increased by 100K since 2000.
- Rise of Nanotechnology as a Discipline

Why STEM? – Real Competitors: SINGAPORE 1960s

http://www.country-data.com/cgi-bin/query/r-11828.html

http://inhabitat.com/marina-bay-sail-by-nbbj-architects/

The New Battlefield: Science and Engineering Ed

National Science Board, S&E Indicators, 2010

The Problem

- Women make up about 51% of the population but produce less than 30% of the Ph.D. degrees
- African-Americans and Chicano/Latino-Americans make up about 24% of the population but combined make up less than 8% of the Ph.D. graduates
- The U.S. is losing "market share" globally in the production of Science and Engineering (S&E) degrees
- 85% of US growth is attributable to advancements from science and engineering

Changes must be put in place now so that we can ensure US dominance in the future

STEM Demographics differ from Broader Metrics

COLLEGE CLASS OF 2010

Degree	Male	Female	Difference
Associate's	293,000	486,000	193,000
Bachelor's	702,000	946,000	244,000
Master's	257,000	391,000	134,000
Professional	46,800	46,400	-400
Doctoral	31,500	32,900	1,400
Total	1,330,300	1,902,300	572,000

- In engineering its NOT a numbers game is a matter of choice
- While women out number men in the broader disciplines, in engineering they trail in every degree discipline.
- Since 85% of our growth is tied to STEM, this limits future opportunities for women.

SCIENCE TECHNOLOGY ENGINEERING MATHEMATICS

STEM

Left

かられ I 恋言 o

Lam the left brain. Lam a scientist. A mathematician. Hove the familiar. I categorize. I am accurate. Linear. Analytical. Strategic. I am practical. Always in control. A master of words and language. Realistic. I calculate equations and play with numbers. I am order. I am logic. I know exactly who I am.

// docinal adjust at // resolve in sybble

is [Population] ing_situry
issociate comparing
state comparing damage
prime of pottage bit // More

craco: contactor = socraco: contactor contactor = socraco = socra e socraco = soc

reddinold <- resili'rog hissi herfill'rog li sistest <- nec_indn; /7 inc/doc m siste <- doug resd; // read byte

THE

SCIENCE + TECHNOLOGY + ENGINEERING + MATHEMATICS

D

Promoting STEM subjects is a national priority to ensure American competitiveness in the 21st Century. To maintain a steady pipeline of STEM-capable graduates, we need to start by investing in more quality STEM-capable teachers to educate and spark student interest in these subjects.

Sources: U.S. Bureau of Labor Statistics, National Science Foundation, National Center for Education Statistics, Business-Higher Education Forum

OF 3.8 MILLION 9TH GRADERS, ONLY 233,000 END UP CHOOSING A STEM DEGREE IN COLLEGE. THAT'S JUST 6 STEM GRADS OUT OF EVERY 100 9TH GRADERS.

SCIENCE import sh.media.* **TECHNOLOGY** ENGINEERING MATHEMATICS STEM

Left brain

OD1Imfc 机行行自由性

nd bic:

I am the left brain. I am a scientist. A mathematician. I love the familiar. I categorize. I am accurate. Linear. Analytical. Strategic. I am practical. Always in control. A master of words and language. Realistic. I calculate equations and play with numbers. I am order. I am logic. I know exactly who I am.

I am the right brain. I am creativity. A free spirit. I am passion. Yearning. Sensuality. I am the sound of roaring laughter. I am taste. The feeling of sand beneath bare feet. I am movement. Vivid colors. I am the urge to paint on an empty canvas. I am boundless imagination. Art. Poetry. I sense. I feel. I am everything I wanted to be.

sn.geom.*;

import sh.net.*;

suborts - stored light - get Boarder deptication real suborts - red(light(sight) - '.' lead as also suborts - in '/ lead is as as a light(sight(sight) - suborts - suborts operations - minopiage) / set subtrac operations - minopiaged / set add Light(signed 510] = regin() ongin

rnddblodd <- regill rog h[<dlicofil[rog_1] atatosel <- ssc_inds; 77 inn/dec s atats <- opun_res0; 77 read byte

Bachelors Degrees Awarded - 2011

 The differentiation begins here. 22% of all BS degrees go to women

Percentage of Bachelors Degrees awarded to women by Discipline - 2011

Not all programs are created equal

The Henry Samueli School of Engineering UC Irvine

Masters Degrees Awarded 2011

27% of all US, MS Engineering degrees go to women

The Henry Samueli School of Engineering UC Irvine

Doctoral Degrees awarded 2011

What does the data tell us?

- Women are **not** choosing to be in Engineering in the same proportion as men.
- The specific field **does** matter. Some disciplines are doing a better job than others
- As degree attainment increases, women become a higher percentage of the graduates
- The data gives insight on what we should be doing at UCI to improve

What must we do to improve?

- This is not a hard problem to solve.
- Create more women PhD's of all races
 - Benchmark other programs nationally who are doing well (University of Michigan, Georgia Tech)
 - Recruit, Recruit! This includes UCI students
 - Incentivize more women PhD and MS production Hold educational workshops for those units that are underperforming
- Identify talented women early in their bachelors degree training and partner them with the right faculty.
 - Professor Dunn-Rankin has developed a program to teach fabrication skills to female UG students
- Partner with Industry.
 - Diversity Advisory Board to help solve this problem
- Marginalize those faculty who don't get it

UCI-HSSoE Grad Student Recruitment Data

Program	Dept. Faculty Head- count	PhD Appli- cants	PhD Admits	PhD Accept (SRI Yes)	M.S Accept (SRI Yes)	# PhD Accept - Female	PhD Accept Fall 2012 - %Female
HSSoE MMT Manufact. Concentr.		13	3	2	8	1	50%
BME	18	215	44	17	8	7	41%
ChE & MSE	15	172	29	13	25	7	54%
Civil & Env. Eng.	22	247	32	12	11	4	33%
Elect. Eng & 3 CS Eng.	32	672	192	21	10	1	5%
MAE	25	285	54	18	30	2	11%