Using Text Analysis of “Most Meaningful Experiences” to Inform Policy

Pamela Brown, Joseph Van Matre, and Zachary Bleemer
Agenda

- Introduction
- Framework
- Policy Question
- Text Analysis Strategies
  - Word use frequency
  - Sentiment analysis
  - Topic models
- Policy influence
Analytical framework

- Policy question
- Corpus
- Data preparation
- Text analytic methods
- Results
- Policy influence

*NOTE: Sample R code will be made available for all methods described in this presentation*
Policy Question: Strategic Planning for UC 2030

University of California aims to improve graduation rates by 2030

Focus is on low-income, African-American, Latino and first generation students.

UC 2030 Dashboard

UC has goals to: (1) produce 200,000 more undergraduate and graduate degrees on top of the 1 million already projected; (2) achieve a 30 percent overall graduation rate and eliminate gaps for first generation and underrepresented groups; and (3) invest $1 billion in faculty and research by adding 1,000 ladder rank faculty over the next four years. This dashboard presents systemwide and campus goals and a means to track progress. State funding is a critical component to success and UC has requested $80 million in permanent funding over the next four years. UC will present any funding received for the system with allocations by campus.

Award 1.2 million degrees between 2015-16 and 2029-30

Increase freshman and transfer graduation rates

Close graduation rate gaps by 2030
Define your corpus

What is one of the most meaningful learning experiences you have had at “your UC campus”?

- Taking sociology with [professor]. Hearing where he came from and the experiences he went through to be able to make it to this level of academia was very inspiring.
- Joining the rowing team. Learning how to study and be successful in my classes.
- College is expensive.
- Learning you won’t be reached out to, you have to be the one that reaches out.

Projects!
Data Preparation:

• Merge survey responses to student characteristics

• Generate list of all popular words in responses
  • Omit words that appear fewer than 50 times
  • Omit “stop words” like prepositions
  • “De-stem” words (e.g. remove plural ‘s’ and verb conjugations)
  • Remove “invalid” words that will impair results (e.g. campus names)

• Add common two- or three-word phrases
Three text analysis tools:

1. Word use frequency by group
2. Sentiment Analysis
3. Topic Models
Methodology:

- Produce a data frame with:
  - Student characteristics, usually defined as binary variables
  - 0/1 indicators for every identified word

- Estimate linear regressions of each student characteristic on all of the word indicators

- Produce word clouds of the words with the highest estimated t-statistics (from the null hypothesis)
  - t-statistics are higher if (1) the word is more common (bypassing outliers) and (2) the word disproportionately appears in the responses of students with the given characteristic
Word frequency examples: simple word cloud
Word frequency examples: UC campuses

UC Davis
- connecting
- experience
- freshmen
- leader
- working
- internship
- animal
- clinic
- seminar
- intern
- native
- feel
- push
- christain
- first year
- expectation
- quarter system

UC Santa Cruz
- withinextreme
- leadership
- skills
- progress
- university
- psych
- housing
- computer
- college
- game
- without
- confident
- quarter
- theater
- senior
- teacher
- org
- active
- important
- space
- intro
- creating
- injustice
- color
- faculty member

UC Merced
- meaningful experiences
- attending
- core
- semester
- undocumented
- bridge
- club
- engineering
- leadership
- campus
- everyone
- service assist
- one meaningful
- amazing people
- meaningful experience
- develop
Word frequency examples: Ethnicity

Asian

Hispanic

White

---

Ethnicity

Asian

Hispanic

White
Three text analysis tools:

1. Word use frequency by group
2. Sentiment Analysis
3. Topic Models
Methodology:
- Estimate ‘Positive’ and ‘Negative’ sentiment of each response
  - Uses the “SentimentAnalysis” R package
- Estimate linear regressions of response sentiment against student characteristics
- Produce word clouds of the words most-associated to positive and negative responses

Note: sentiment ranges from -1 to 1
Regression estimates: effect size of estimates
Regression estimates: effect size of estimates

![Bar chart showing regression estimates for different campuses with standard deviations. The x-axis represents different campuses (1 to 10), and the y-axis represents standard deviations.]
Three text analysis tools:

1. Word use frequency by group
2. Sentiment Analysis
3. Topic Models
Methodology:

• Computationally identify “topics” in responses
  • Uses the “topicmodels” R package
  • You choose the number of topics (we chose 30). The computer finds them, characterized by often-adjacent words

• Each topic is characterized by the words that appear more-frequently in that topic; each response is characterized by its topics

• Regress student characteristics on topic composition to identify which topic is most-associated
Methodology:

1. **Corpus**
2. **Term-topic matrix**
3. **Document-topic matrix**
4. **Interpret and label topics**
5. **Contextualize documents by category**

- Number of Topics

The process involves contextualizing documents by category, interpreting and labeling topics, and analyzing term and document-topic matrices derived from the corpus.
UC Berkeley is most closely associated with topic 17, which looks like this:

UC Merced is most closely associated with topic 10, which looks like this:
Example: **Pell Students** are most closely associated with topic 25, which looks like this:

Topic 25:
Using results to influence policy

Using the data to inform 2030 strategic goal setting:

- Identify experiences that matter
- Identify programs and strategies that have impact
- Find artifacts that tell a representative story
Using results to influence policy

Survey responses that highlight program impact

“For me the most meaningful learning experience was being disqualified from the university because of low grades that were caused by difficulty with anxiety that I developed at college.

However the support of my CAPS counselors, Marshall academic advisors and some faculty helped me return and succeed. These faculty that helped me…really helped me overcome my condition and regain confidence in myself.”

Survey responses that support sense of belonging

“Being able to make new friends knowing you’re not the only one that may experience certain struggles. It made my first year college experience somewhat more easy to handle.”

“The most meaningful learning experience that I have had so far was discovering the importance of self care… I have had to deal with the most stress and anxiety I have ever had…but there are campus resources to help me deal with it.”
Fixed-effect word regression, sentiment analysis, and topic modeling can be implemented “out-of-the-box.”

Computational text analysis is:

• Feasible
• Illuminating
• Actionable
Thank you!
pamela.brown@ucop.edu
joseph.vanmatre@ucop.edu
zachary.bleemer@ucop.edu