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Single chains: ultrafast excited state relaxation
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Materials Explored

entire solar spectrum. We plan to turn this limitation into an advantage for
powering greenhouses by desighing optoelectronic organic materials that absorb
mainly at wavelengths outside the optimal range for plant growth.

X, =
We envision that solar cells made from such flexible and It is important to establish structure—function CizHzs P1 P3
affordable materials could be used as covers or roofs of : ' relationships that give rise to the emergent electronic J oo AT Ny o '\{ =
greenhouses in order to provide them with power, = | o\ properties. Thus, it is informative to correlate native “ = CiaHas /g\( i{
particularly when separated from the electrical supply §g \/ molecular energetics and relaxation dynamics with N N.g-N N N
grid. These energy-generating devices will be transparent f’é%c) » A systematic chemical modification of the conjugated back 14 N N m, +
to the shorter wavelengths of sunlight needed for plant %’ 7 ¥ bone. . S s” —J],
growth and use the longer wavelengths for generating the _gg Optimal absorption ey dios T " h led bol Molecular structures of the push-pull P2 s P4 C8“>/1?_\<C8H”
power needed to heat, irrigate, or otherwise run the & i revious stucies have shown that controfled polymer  polymers used in this study. Where all <;_) | NN

, , 0 700-1100 nm aggregation is critical for overcoming the inherently short po/ymers contain @ EXOCyC./IC. olefin e BN
greenhouse, creating a zero-energy usage farming e T exciton lifetime in narrow gap materials. The material Substituted cyclopentadithiophene NggN L/ S,I_
structure. wmyslsrthifnd structures we studied here was shown in the right figure. ‘push™ unit, and the “pull” unit (1) N__N

varies as P1, P2, P3, and PA4. S

Adsorption Peak and Band Gap RESUItS to Date

Theories & Methodologies
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The power conversion efficiency of the cell is directly proportional blends may be more heavily dominated by
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To create optical organic materials for
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Electronic Structure Calculations of PI-P4 Polymers
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