Medical Device Security: The Transition From Patient Privacy To Patient Safety

Scott Erven
Scott Erven is an Associate Director at Protiviti with over 17 years of information security and information technology experience with subject matter expertise in medical device and healthcare security. Scott has advised the US Department of Homeland Security, Health and Human Services, Food and Drug Administration as well as national policymakers. His research on medical device security has been featured in Wired, Forbes, BBC and numerous media outlets worldwide. He has been involved in numerous IT certification development efforts as a subject matter expert in information security. His current focus is on research that affects human life and patient safety issues inside today’s healthcare landscape.

Scot Erven

- Associate Director – Medical Device & Healthcare Security
- Security Researcher
- Over 17 Years Experience - 5 Years Experience Managing Security Inside Healthcare Systems
- Over 4 Years Researching Medical Device Security
Agenda

Why Research Medical Devices

Phase 1 Research: Device Vulnerabilities

Phase 2 Research: Internet Exposure

Phase 3 Research: Admin Access

Honeypot Research: Are Attacks A Reality?

Problem Awareness

Treatment Plans
Why Research Medical Devices
Personal & Professional Impact

- Many individuals rely on these devices daily.

- Even at times when we aren’t personally affected, people we care about may be.

- Patient safety and quality care is at the core of healthcare’s mission and values.
Malicious Intent Is Not A Prerequisite To Patient Safety Issues
What We Are Doing

<table>
<thead>
<tr>
<th>Medical Device Assessment</th>
<th>Discover patient safety issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Security-Focused Technical Assessment (not HIPAA)</td>
<td></td>
</tr>
<tr>
<td>• Research serves healthcare mission and values</td>
<td></td>
</tr>
<tr>
<td>• Equip defenders against accident and adversaries</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordination & Notification</th>
<th>Alert affected parties</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Healthcare Providers</td>
<td></td>
</tr>
<tr>
<td>• Medical Device Manufacturers</td>
<td></td>
</tr>
<tr>
<td>• Government Agencies (FDA and ICS-CERT)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Awareness</th>
<th>Inoculate against future issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Security and Healthcare Conferences</td>
<td></td>
</tr>
<tr>
<td>• 1-on-1 with healthcare providers</td>
<td></td>
</tr>
<tr>
<td>• Educating FDA and Healthcare Providers</td>
<td></td>
</tr>
</tbody>
</table>
Phase 1 Research: Device Vulnerabilities
Weak default/hardcoded administrative credentials

- Treatment modification
- Cannot attribute action to individual

Known software vulnerabilities in existing and new devices

- Reliability and stability issues
- Increased deployment cost to preserve patient safety

Unencrypted data transmission and service authorization flaws

- Healthcare record privacy and integrity
- Treatment modification
Phase 2 Research: Internet Exposure
Shodan Search Initial Findings

Doing a search for anesthesia in Shodan and realized it was not an anesthesia workstation.

Located a public facing system with the Server Message Block (SMB) service open, and it was leaking intelligence about the healthcare organization’s entire network including medical devices.
Initial Healthcare Organization Discovery

Very large US healthcare system consisting of over 12,000 employees and over 3,000 physicians. Including large cardiovascular and neuroscience institutions.

Exposed intelligence on over 68,000 systems and provided direct attack vector to the systems.

Exposed numerous connected third-party organizations and healthcare systems.
Did We Only Find One?

No. We found hundreds!!

Generic Search Examples:

- shodan port:445 org:health*/clinic/hospital:

Change the search term and many more come up. Potentially thousands if you include exposed third-party healthcare systems.
Summary Of Devices Inside Organization

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesia Systems</td>
<td>21</td>
</tr>
<tr>
<td>Cardiology Systems</td>
<td>488</td>
</tr>
<tr>
<td>Infusion Systems</td>
<td>133</td>
</tr>
<tr>
<td>MRI</td>
<td>97</td>
</tr>
<tr>
<td>PACS Systems</td>
<td>323</td>
</tr>
<tr>
<td>Nuclear Medicine Systems</td>
<td>67</td>
</tr>
</tbody>
</table>
Potential Attacks - Physical

- We know what type of systems and medical devices are inside the organization.
- We know the healthcare organization and location.
- We know the floor and office number.
- We know if it has a lockout exemption.
Potential Attacks - Phishing

- We know what type of systems and medical devices are inside the organization.
- We know the healthcare organization and employee names.
- We know the hostname of all these devices.
- We can create a custom payload to only target medical devices and systems with known vulnerabilities.
Potential Attacks - Pivot

We know the direct public Internet facing system is vulnerable to MS08-067 and is Windows XP.

We know it is touching the backend networks because it is leaking all the systems it is connected to.

We can create a custom payload to pivot to only targeted medical devices and systems with known vulnerabilities.
Phase 3 Research: Admin Access
Disclosure Timeline

August 17th, 2014 – Initial disclosure to GE Healthcare

September 16th, 2014 – Additional disclosure to ICS/CERT

August 25th, 2014 – Initial disclosure to ICS-CERT

December 3rd, 2014 – Confirmation from ICS-CERT on completion of GE investigation and closing of issue.

NOTE: ALL INFORMATION DISCLOSED WAS PUBLICLY AVAILABLE ON GE HEALTHCARE’S WEBSITE.
GE Discovery NM750b – Nuclear Imaging

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Version</th>
<th>Type of Device</th>
<th>Type of Account</th>
<th>Login info</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>Discovery</td>
<td>NM 750b</td>
<td>Nuclear Imaging</td>
<td>Telnet- Root</td>
<td>UserID = "insite" Password = "2getin"</td>
</tr>
<tr>
<td>GE</td>
<td>Discovery</td>
<td>NM 750b</td>
<td>Nuclear Imaging</td>
<td>FTP- Admin</td>
<td>UserID = "insite" Password = "2getin"</td>
</tr>
</tbody>
</table>
CVE-2011-5374 GE Discovery NM670/NM630 - Nuclear Imaging/CT

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Version</th>
<th>Type of Device</th>
<th>Type of Account</th>
<th>Login info</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>Discovery</td>
<td>NM670</td>
<td>Nuclear Imaging/CT</td>
<td>SU Account</td>
<td>UserID = "su" Password = "install"</td>
</tr>
<tr>
<td>GE</td>
<td>Discovery</td>
<td>NM670</td>
<td>Nuclear Imaging/CT</td>
<td>Service Account</td>
<td>UserID = "service" Password = "#bigguy1"</td>
</tr>
<tr>
<td>GE</td>
<td>Discovery</td>
<td>NM670</td>
<td>Nuclear Imaging/CT</td>
<td>Root Account</td>
<td>UserID = "root" Password = "install"</td>
</tr>
<tr>
<td>GE</td>
<td>Discovery</td>
<td>NM630</td>
<td>Nuclear Imaging</td>
<td>SU Account</td>
<td>UserID = "su" Password = "install"</td>
</tr>
<tr>
<td>GE</td>
<td>Discovery</td>
<td>NM630</td>
<td>Nuclear Imaging/CT</td>
<td>Service Account</td>
<td>UserID = "service" Password = "#bigguy1"</td>
</tr>
<tr>
<td>GE</td>
<td>Discovery</td>
<td>NM630</td>
<td>Nuclear Imaging/CT</td>
<td>Root Account</td>
<td>UserID = "root" Password = "install"</td>
</tr>
</tbody>
</table>
So If They Are Indeed Default Are There Still Issues

• Documentation instructs in some cases to not change credentials and not allow password reset.

• Documentation instructs in some cases to not change password or your account will not be able to be supported.

• Documentation not updated with how to change default credentials and secure configuration guides are lacking.

• Support personal often rely on implementation documentation so these logins are heavily utilized in the healthcare industry.
3. When the User Properties screen appears, verify/change the following parameters and click **OK**.

- **User Must Change Password at Next Login**: Unchecked
- **User Cannot Change Password**: Checked
- **Password Never Expires**: Checked
- **Account Disabled**: Uncheck

3.3.2 Changing Passwords

You can change any of the account passwords with the following procedure.

Important

Do not change the InSite password. Remote access will be disabled for InSite support if the password is changed.
Table 3-8: Acquisition Passwords

<table>
<thead>
<tr>
<th>Account User Name</th>
<th>Default Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td>root.genie</td>
</tr>
<tr>
<td>service</td>
<td>service.</td>
</tr>
<tr>
<td>insite</td>
<td>insite.genieacq (Do not change this password!)</td>
</tr>
<tr>
<td>admin</td>
<td>admin.genie</td>
</tr>
<tr>
<td>reboot</td>
<td>reboot</td>
</tr>
<tr>
<td>shutdown</td>
<td>shutdown</td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>Name</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>MuseAdmin</td>
<td>Muse!Admin</td>
</tr>
</tbody>
</table>

NOTE: Tech Support will logon to the system with pcAnywhere using this user name and password.
Examples

Ask the remote station operator for your assigned username and password.

This resets the user’s confirm password to password.

NOTE:
To perform the following steps, you must generate X-ray radiation. Follow proper safety precautions with the X-ray system.

1. Turn on the digital system and login as service:
 (user: serviceapp password: orion)
2. When the service application starts, select the **Calib** function on the **Main Menu**.
3. Select **System Manual Tab**.
4. Select **Overlay Tab**.
5. You should now see a white circle in the image display (you may want to minimize the calibration window). Activate fluoro radiation; center the II output phosphor within the outline circle by moving the camera/lens assembly position on the image intensifier (II).
Honeypot Research: Are Attacks A Reality?
Real World Attacks

What we were looking for...

- Using known default login information for remote access?
- Leveraging existing exploits for remote command execution?
- Custom malware?
- Malicious intent to interfere with the device (or worse, someone using the device)?
- Campaigns against specific vendor devices?
Real World Attacks – The Data

<table>
<thead>
<tr>
<th>Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeypots</td>
<td>10</td>
</tr>
<tr>
<td>Successful logins (SSH/Web):</td>
<td>55,416</td>
</tr>
<tr>
<td>Successful exploits (Majority is MS08-067)</td>
<td>24</td>
</tr>
<tr>
<td>Dropped malware samples</td>
<td>299</td>
</tr>
<tr>
<td>Top 3 Source Countries</td>
<td>Netherlands, China, Korea</td>
</tr>
<tr>
<td>HoneyCreds login</td>
<td>8</td>
</tr>
</tbody>
</table>

HoneyCred logins are unique to the honeypot ssh/web service, someone did some research.
Real World Attacks – Conclusion

What did the attacker do once he got in? Nothing yet

Did they realize they had root on a MRI machine? Probably not

Are there owned medical devices calling back to a C2? Absolutely

Do the C2 owners know what the information they are sitting on? Didn’t appear so
Problem Awareness
Problem Awareness

1. **Medical devices are increasingly accessible** due to the nature of healthcare.

2. HIPAA focuses on patient privacy, not patient safety.

3. FDA does not validate cyber safety controls.

4. Malicious intent is not a prerequisite for adverse patient outcomes.
Isolation and Silos

- Risk
- Physicians
- IT
- Biomed
- Legal
- Compliance
- Procurement
- Administration
- Board
Stakeholder Ecosystem

- Device Manufacturers
- Security Researchers
- Patients
- Regulators
- Industry Groups
- Healthcare Providers
- Insurance
- Healthcare Providers
Treatment Plans
It falls to all of us. Patient safety is not a spectator sport.

- Stakeholders must understand prerequisites
- Multi-stakeholder teams and conversations
- Engage with willing allies where domains of expertise overlap
- Incorporate safety into existing processes
Summary of Recommended Treatment

- Patient safety as the overriding objective
- Avoid failed practices and iteratively evolve better ones
- Engage internal and external stakeholders
- Safety into existing practices and governance

Projected Outcomes

- “Reliable medical devices to market without undue delay or cost.”
- Collaboration among willing allies on common terms
- Medical devices resilient against accidents and adversaries
Medical Device Security Lifecycle: Addressing Risks

• **Planning & Requirements Phase**
 – Risk assessment, vulnerability assessment and threat modeling
 – Obtain Manufacturer Disclosure Statement for Medical Device Security (MDS2)

• **Procurement & Contracting Phase**
 – Risk reduction prior to procurement
 – Liability reduction for contracting

• **Implementation Phase**
 – Architecture and system design validation
 – Post implementation security validation

• **Maintenance Phase**
 – Vulnerability assessment and penetration testing
 – Liaison with manufacturers, federal agencies and working groups

• **Decommission Phase**
Where To Start – Two Approaches

• Medical Device Security Risk Assessment
 – Gap assessment to evaluate governance of medical device lifecycle
 – Most common starting point for organizations that accept the risk exposure of medical devices

• Vulnerability Assessment & Penetration Testing
 – Device specific assessment to identify current risk in medical devices
 – Initial approach for organization wanting to identify current risk
 – Most often utilized to assess maturity after initial risk assessment
Highlights From The Last 18 Months

- FDA Premarket & Draft Postmarket Guidance and Workshops
- IEEE Building Code
- IATC Hippocratic Oath for Connected Medical Devices
- Coordinated Vulnerability Disclosure Policies
- FDA Safety Communications BEFORE evidence of harm
Q&A

Scott Erven
Associate Director

Direct: (213) 327-1414
Mobile: (719) 332-6606
scott.erven@protiviti.com

Protiviti®
Risk & Business Consulting,
Internal Audit.

Powerful Insights. Proven Delivery.®