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ABSTRACT: Local food systems may facilitate agroecological practices that conserve| |METHODS: Our foodshed analysis consisted of &1900..... —

nutrient, energy, and water resources. However, little is known about the potential for local| |three steps: 'f:"-":;’é'j‘.;;..t?{ PO

food systems to scale beyond niche markets and meet a substantial fraction of total food| |(1) estimating the per-capita food demand, ; ?" te_ ‘.' :/. ) ¥y
demand. Here we estimate the upper potential for all existing US croplands to meet total| |(2) creating maps of the number of people that could v Cae e

US food demand through local food networks. Our spatially explicit approach simulates the be fed based on the amount of cropland present in
years 1850 through 2000 and accounts for a wide range of diets, food waste, population each map grid cell, and
distributions, cropland areas, and crop yields. Our results demonstrate an unexpectedly large| |(3) selecting which cells should be allocated to which
current potential for meeting as much as 90% of the national food demand locally. These cities in order to maximize the percentage of the
results provide a spatially explicit foundation for exploring the many dimensions of total US population that can be fed with locally
agroecosystem sustainability. produced food.
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ABSTRACT: Passage of the California Global Warming Solutions Act of 2006 (AB ‘- ‘ Heat limits panel oy
32) set the stage for a transition to a low-carbon economy. In addition to greenhouse \ \ \ \ \ efficiency Solé?sgﬁgigal
gas action, drought 1n California is ushering in an era of unprecedented advances 1n

Solar PV
water resource management. For example, Congressman Jared Huffman's pending /( /( /( /( /( /( Wind
assembly bill would expand investments to reduce evaporative losses in the Bureau - 552 Nuclear

| ' L=~ ' ' k. '5\!'*' ' o ‘ ' I Geothermal

[
————
of Reclamation water conveyances. Due to the simultaneous demand for greenhouse B
gas and water action, it 1s imperative that emerging solutions create synergies and N atulglngzz —
avoid tradeoffs at the energy-water nexus. Photovoltaic structures constructed over Oil |(———————
—

aqueducts have been proposed as one novel solution to energy and water Coal

management. The objective of this study is to address knowledge gaps on the Figure 1. Schematic of a solar canal depicting the basic concepts behind the proposed benefits of
increased photovoltaic efficiency and reduced evaporation.

* Cool water mitigates panel heating
» The water is shaded to prevent evaporation
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